The ON pathway rectifies the OFF pathway of the mammalian retina.
نویسندگان
چکیده
In the vertebrate visual system, ON cells respond to positive contrasts and OFF cells respond to negative contrasts, and thus both ON and OFF cells exhibit rectification. We investigated the retinal circuits by which the ON pathway rectifies the OFF pathway. White noise was projected onto an in vitro preparation of the mammalian retina and excitatory currents were recorded from retinal ganglion cells under whole-cell voltage clamp. Currents in OFF cells were more rectified than those in ON cells: thus, currents in ON cells were able to signal both positive and negative contrasts, but currents in OFF cells were virtually restricted to negative contrasts. Blocking signals in the ON pathway derectified currents in OFF ganglion cells, thus allowing them to be modulated by positive contrasts, indicating that the ON pathway normally rectifies currents in OFF ganglion cells. Such cross-rectification from ON to OFF pathways required intact glycinergic inhibition, indicating that a glycinergic amacrine cell, most likely the AII amacrine cell, allows the ON bipolar cell to hyperpolarize the OFF bipolar cell close to the threshold for transmitter release, thus rectifying excitatory currents in the OFF ganglion cell. Asymmetrical rectification of ON and OFF cells may be an adaptation to natural scenes that have more contrast levels below the mean than above. Thus, in order for ON and OFF pathways to encode an equal number of contrast levels, the ON cells must signal some negative contrasts.
منابع مشابه
The Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review
Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملThe effect of high intensity interval training on complex mammalian target of Rapamycin 1 (mTORC1) pathway in Flexor hallucis longus muscle (FHL) of streptozotocin-induced diabetic rats
Background and Objective: The most well-known mechanism for regulating complex mammalian target of rapamycin 1 (mTORC1) pathway activity is the insulin/IGF-1-dependent pathway in skeletal muscles. The role of high intensity interval training (HIIT) exercise has not yet been studied on this important pathway in protein synthesis among people with type 2 diabetes. The purpose of the present study...
متن کاملP-88: Assessing Expression Changes of Some Wnt Pathway Genes During Goat Early Embryonic Development
Background: The developmental competency of embryos is affected by several factors, including the developmental pathways and their elements. In mammalian species including goat, fertilized oocyte undergoes several divisions to form a structure called blastocyst. These events depend on the successful control of temporal and spatial expression of genes involved in genome activation. One of the cr...
متن کاملRho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension
In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 16 شماره
صفحات -
تاریخ انتشار 2010